ax = (vxf - vxi)/∆t, where ∆t =
(tf - ti).
vxf = vxi + ax ∆t.
vx(avg) = (vxf + vxi)/2.
xf - xi = vxi∆t + ½ax∆t2.
vxf2 = vxi2 + 2ax(xf
- xi).
vx = v0x + ∆vx
= v0x + ax∆t,
vy = v0y
+ ay∆t,
vz
= v0z∆t + az∆t,
or
v =
v0
+ a∆t.
x = x0 + v0x∆t + ½ax∆t2,
y = y0
+ v0y∆t + ½ay∆t2,
z = z0
+ v0z∆t + ½az∆t2,
or
r = r0 +
v0∆t + ½a∆t2.
vx = v0cosθ0 =
constant, x = x0 + v0cosθ0t,
vy = v0sinθ0 - gt, y = y0 + v0sinθ0t - ½gt2.
Trajectory: y = y0 + (x - x0)tan(θ0)
- g(x - x0)2/(2v02cos2(θ0)).
Range: R = (v02sin2θ0)/g.
Centripetal acceleration: ac = v2/r.
Centripetal force: F = mv2/r
Friction: fs ≤ μsN, fk= μkN
Drag: R = -bv (low speed), R = ½CρAv2
(high speed)