Work: W = F·d
Scalar product: A·B = ABcosθ =
AxBx + AyBy + AzBz
Hooke's law: F = -kr, Fx= -kx
Elastic potential energy: W = (1/2)kx2
Conservative systems: E = K + U, Fx = -dU/dx
Work-kinetic energy theorem:
Wnet = ∆K = (1/2)m(vf2 - vi2)
Power: P = F·v or P = ∆W/∆t
coefficient of restitution: (outgoing speed)/(incoming speed)
Gravitational force: F12 = (-G m1m2/r122)
(r12/r12)
Gravitational potential energy: Uf - Ui = -G m1m2(1/r12f
- 1/r12i)
p = mv, F = ∆p /∆t,
I= ∆p = F∆t.
Center of mass: xCM = ∑mixi/M, yCM
= ∑miyi/M, zCM = ∑mizi/M,
M = ∑mi.
xCM = ∑mixi/M, yCM = ∑miyi/M, zCM = ∑mizi/M, M = ∑mi.
ω = dθ/dt, ωavg = (θf - θi)/(tf
- ti) = Δθ/Δt.
α = dω /dt, αavg = Δω/Δt.
Rotation about an axis with constant α:
ωf
= ωi + α(tf -
ti), θf = θi + ωi(tf - ti)
+ ½α(tf - ti)2.
v = ds/dt = rdθ/dt = rω,
at = dv/dt = rdω/dt = rα, ar = v2/r = rω2,
a = (at2 + ar2)½ = (r2α2
+ r2ω4)½ = r(α2 + ω4)½.
Moment of inertia: I = ∑miri2.
Kinetic energy: K = ∑Ki = ∑½mivi2
= ∑½mri2ω2 = ½ω2 ∑mri2
= ½Iω2.
Rolling: KEtot = ½mv2
+ ½Iω2, v = rω.
Angular momentum: L = Iω.
Torque: τ = r ×
F = Iα = dL/dt.
Work and power: W = τdθ, P = dW/dt = τdθ/dt = τω.
T2 = (4π2/Gm1)R3
Harmonic motion: F = -kx.
x(t) = Acos(ωt + φ), v(t) = -ωAsin(ωt + φ), a(t) = -ω2Acos(ωt + φ)
= -ω2x.
ω = sqrt(k/m) = 2πf = 2π/T.
Energy: K = (1/2)mv2, U = (1/2)kx2, E = K + U =
(1/2)kA2.
Pendulum: θ(t) = θmaxcos(ωt+φ), ω2 = g/L, T = 2π(L/g)1/2.
Traveling waves: y(x,t) = A sin(kx ± ωt + φ)
Waves on a string: v = (F/μ)1/2
Sound level: β = 10 log10(I/I0)
Beat frequency: |f1 - f2|
Standing sound waves:
tube of length L with two open ends: L = nλ/2, n = 1, 2, 3, ...
tube of length L with one open end and one closed: L = nλ/4, n = odd integer
Doppler effect:
f = f0(v - vobs)/(v - vs) (velocity components
in the direction of v are positive)