Formulas 2

Currents, Magnetostatics, EM waves, Optics

Currents and circuits

 
Current: I = ∆Qnet/∆t = ∫j∙dAj = current density
Resistance: R = ∆V/I
Resistance of a straight wire: R = ρL/A
Power: P = I∆V = I2R = (∆V)2/R
Resistors in series: R = R1 + R2 + R3
Parallel Resistors: 1/R = (1/R1) + (1/R2) + (1/R3)
RC circuits time constant: τ = RC

Magnetostatics

 
Magnetic force on a moving charge: F = qv × B
Magnetic force on a long straight wire: F = IL × B
Charged particle in a magnetic field: r = mv/(qB)
Ampere's law: Γ B∙ds = μ0Ithrough Γ
The magnetic field of a long straight wire: B = μ0I/(2πr)
The magnetic field inside a solenoid: B = μ0nI

Current loops

Magnetic moment: μ = IAn
Torque: τ = μ × B,  τ = μB sinθ
Potential energy: Uμ = -μB cosθ

Faraday's Law

 
Faraday's law: Induced emf = ∫around loopE·dr = -∂ΦB/∂t (through a fixed area)
Magnetic flux:  ΦB = ∫AB·dA,  dΦB = B dA cosθ, 
Induced current: I = emf/R
Transformer: V2/N2 = V1/N1,    V2 I2  ≤  V1 I1

Electromagnetic Waves

 
Energy density in EM fields: u = ½ε0E2 + B2/(2μ0)
Energy flux S, intensity I: S = (1/μ0)E × B,  I is proportional to Emax2
Sinusoidal waves: E(x,t) = Emaxsin(kx - ωt + φ),  Brad = Erad/c
Polarizers: Itransmitted = I0cos2θ.

Geometrical Optics

 
Law of reflection: θ1 = θ2
Law of refraction: n1sinθ1 = n2sinθ2
Total internal reflection: sinθc = n2/n1
Mirror equation: 1/xo + 1/xi = 1/f,  M = -xi/xof = R/2
Lens equation: 1/xo + 1/xi = 1/f,  M =- xi/xo

Wave Optics

 
Double slit, diffraction grating (maxima): d sinθ = mλ, m = 0, 1, 2, ...
Single slit (minima): w sinθ = mλ, m = 1, 2, ...
Resolving power: θmin = 1.22 λ/D
Constructive interference (thin oil film on water): 2noiltcosθt = (m+1/2)λ, m = 0,1,2,…