Physics Laboratory 1

Laboratory exercises are not just about getting the right result, but about recognizing that fundamental physics principles shape our everyday experiences and underlie many of the devices that we use in our personal and professional lives.  Please do not treat the laboratories as cookbook exercises.  Permit yourself to think!   Thoughtful answers to the questions in blue will give you most of the laboratory credit.

You can discuss the lab with your fellow students and the lab instructors in the Canvas discussion forum.


Open a Microsoft Word document to keep a log of your experimental procedures and your results.  This log will form the basis of your lab report.  Address the points highlighted in blue.

Grading scheme for all labs:


Objective:

In this laboratory you will determine the density of a metal block by applying Archimedes' principle.  Then you will determine the viscosity of a brand of "Volumizing Shampoo" using Stokes' law.  You will use a fluid column as a viscometer and measure the rate of descent of a steel sphere, as it falls under the influence of gravity through the fluid, after the sphere has reached terminal velocity.

Experiment 1: 

Archimedes' Principle states that an object partially or wholly immersed in a gas or liquid is acted upon by an upward buoyant force B equal to the weight w of the gas or liquid it displaces.  In this experiment you will verify this by measuring the apparent loss of weight of several submerged objects and by finding the weight of the displaced fluid.  You will also determine the density of the objects.  A PASCO Force Sensor is used to measure the weights.

Equipment that was used to produce the experimental data below:

image

Procedure:

I.  Verify Archimedes' principle using the data below.  Click on a small picture if you want to see an enlarged picture.

(a) (b) (c) (d)
Object 1: image image image image
Object 2: image image image image
Object 3: image image image image
Object 4: image image image image

For each of the objects:

(a)  Determine the weight Wc of the empty container with the handle.  When the container is suspended from the force sensor, the force sensor measures the force of gravity (weight) acting on the object, and the program displays the magnitude of this force (in N) on the computer screen.

(b)  Determine the weight of an object Wo when it is suspended above the container with the overflow spout.  This container is completely filled with water, and the container with the handle standing below the spout is empty.

(c)  Determine the apparent weight of the object Wow after it has been lowered into the water.  As the object is lowered into the water, water pours out of the overflow spout.  The container with the handle has collected this water.

(d)  Determine the weight Wcw of the container with the handle holding the collected water.

Record the weights in a spreadsheet as shown below.

  Wc Wo Wow Wcw Ww Fb (Fb-Ww)/Fb
Object 1              
Object 2              
Object 3              
Object 4              

For each of the objects:

II.  Determine the density of the objects.

Extend your Excel spreadsheet.  Set up labels as shown below.

  mo mw Vw ρo material
Object 1          
Object 2          
Object 3          
Object 4          
Material Density (kg/m3)
Aluminum   2.7*103
Brass 8.7*103
Lead 11.3*103
Steel 7.9*103
Water 1.0*103

Log entries:


Viscosity

Viscosity is a measure of a fluids resistance to relative motion within the fluid.  Highly viscous fluids do not readily flow.  The viscosity of a fluid usually varies with temperature.  For a fluid flowing through a pipe in laminar flow, viscosity is one of the factors determining the volume flow rate.

Poiseuille's law: Q = π∆Pr4/(8ηL)

Volume flow rate = π*(pressure difference)*(pipe radius)4/[8*(pipe length)*viscosity)

Exercise

Blood is a viscous fluid circulating through the human body.  The circulatory system is a closed-loop system with two pumps.  One-way valves keep the flow unidirectional.  A sketch is shown below.  The unit of pressure in the sketch is mm Hg.  (1 atm = 760 mm Hg)

image

During heavy exercise, the blood's volume flow rate is 5-10 times higher than when the body is at rest.  Discuss different possible ways that a body can accomplish this?


It is often important to know the viscosity of a fluid.  A viscosimeter is the instrument used to measure viscosity.  The study of the viscosity of substances is known as rheology.

Example:

In order to keep the pistons moving smoothly in the cylinders of the internal combustion engine in a car, a thin film of motor oil between the piston rings and the cylinder wall acts as a lubricant.  The oil must be able to keep the piston moving smoothly, when the engine first starts up and is still cold and when the engine reaches its high operating temperature.  One way of measuring an oil's ability to lubricate is to measure its viscosity.

In this session you will determine the viscosity of different brands of "Volumizing Shampoo" using Stokes' law.  You will use a fluid column as a viscometer and measure the rate of descent of a steel sphere, as it falls under the influence of gravity through the fluid, after the sphere has reached terminal velocity.

George Gabriel Stokes, an Irish-born mathematician, worked most of his professional life describing fluid properties.  Stokes' law gives the force required to move a sphere through a viscous fluid at a specific velocity, as long as the flow around the sphere is laminar and the Reynolds number is low (Reynolds number < 1).  Stokes' Law is written as

F = 6πηrv.

Here r is the radius of the sphere, v the speed and η the viscosity. 

Experiment 2:

Procedure:

Measure the rate of descent of a steel sphere, as it falls under the influence of gravity through the shampoo.

image   image

Do the experiment!  Find the speed (positive number) of the sphere.

Data Analysis:

The forces acting on the sphere are gravity, the buoyant force, and the viscous drag force given by Stokes' law.  A free body diagram is shown below.


image

Since the sphere moves with constant velocity, the net force is zero. 

The density of the "Volumizing Shampoo" is very close to that of water, ρfluid = 1.03 g/cm3.
The density of the stainless steel ball is 7.866 g/cm3, and its diameter is 1/4 inch = 0.635 cm.

fluid viscosity (Pa-s)
honey 2 - 10
molasses 5 - 10
ketchup 50 - 100
chocolate syrup 10 - 25

Convert your log into a lab report.  See the grading scheme for all lab reports.

Name:
E-mail address:

Laboratory 1 Report

Save your Word document (your name_lab1.docx), go to Canvas, Assignments, Lab 1, and submit your document.